Computational Model for Transport in Nanotube-Based Composites with Applications to Flexible Electronics

نویسندگان

  • Satish Kumar
  • Muhammad A. Alam
  • Jayathi Y. Murthy
چکیده

Thermal and electrical transport in a new class of nanocomposites composed of random isotropic two-dimensional ensembles of nanotubes or nanowires in a substrate (host matrix) is considered for use in the channel region of thin-film transistors (TFTs). The random ensemble of nanotubes is generated numerically and each nanotube is discretized using a finite volume scheme. To simulate transport in composites, the network is embedded in a background substrate mesh, which is also discretized using a finite volume scheme. Energy and charge exchange between nanotubes at the points of contact and between the network and the substrate are accounted for. A variety of test problems are computed for both network transport in the absence of a substrate, as well as for determination of lateral thermal and electrical conductivity in composites. For nanotube networks in the absence of a substrate, the conductance exponent relating the network conductance to the channel length is computed and found to match experimental electrical measurements. The effective thermal conductivity of a nanotube network embedded in a thin substrate is computed for a range of substrate-to-tube conductivity ratios. It is observed that the effective thermal conductivity of the composite saturates to a size-independent value for large enough samples, establishing the limits beyond which bulk behavior obtains. The effective electrical conductivity of carbon nanotube-organic thin films used in organic TFTs is computed and is observed to be in good agreement with the experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Model for Transport in Nanotube-Based Composites With Applications to Flexible Electronics Thermal and electrical transport in a new class of nanocomposites composed of random isotropic two-dimensional ensembles of nanotubes or nanowires

Thermal and electrical transport in a new class of nanocomposites composed of random isotropic two-dimensional ensembles of nanotubes or nanowires in a substrate (host matrix) is considered for use in the channel region of thin-film transistors (TFTs). The random ensemble of nanotubes is generated numerically and each nanotube is discretized using a finite volume scheme. To simulate transport i...

متن کامل

Electro-Thermal Transport in Nanotube Based Composites for Macroelectronic Applications

Kumar, Satish, M.S.E., Purdue University, December, 2007. Electro-Thermal Transport in Nanotube Based Composites for Macro-Electronic Applications. Major Professors: Muhammad A. Alam and Jayathi Y. Murthy. Dispersions of particles of different shapes and sizes in fluids or solids modify the transport properties of the underlying matrix. A remarkable enhancement in the electrical, thermal and ot...

متن کامل

Investigation of Crack Resistance in Single Walled Carbon Nanotube Reinforced Polymer Composites Based on FEM

Carbon nanotube (CNT) is considered as a new generation of material possessing superior mechanical, thermal and electrical properties. The applications of CNT, especially in composite materials, i.e. carbon nanotube reinforced polymer have received great attention and interest in recent years. To characterize the influence of CNT on the stress intensity factor of nanocomposites, three fracture ...

متن کامل

A model for modified electrode with carbon nanotube composites using percolation theory in fractal space

We introduce a model for prediction the behavior of electrodes which modified withcarbon nanotubes in a polymer medium. These kinds of polymer composites aredeveloped in recent years, and experimental data for its percolation threshold isavailable. We construct a model based on percolation theory and fractal dimensionsand using experimental percolation threshold for calculating the moments of c...

متن کامل

Comparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites

Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013